Dysregulation of Amyloid-β Protein Precursor, β-Secretase, Presenilin 1 and 2 Genes in the Rat Selectively Vulnerable CA1 Subfield of Hippocampus Following Transient Global Brain Ischemia
نویسندگان
چکیده
The interaction between brain ischemia and Alzheimer's disease (AD) has been intensively investigated recently. Nevertheless, we have not yet understood the nature and mechanisms of the ischemic episodes triggering the onset of AD and how they influence its slow progression. The assumed connection between brain ischemia and the accumulation of amyloid-β (Aβ) peptide awaits to be clearly explained. In our research, we employed a rat cardiac arrest model to study the changes in gene expression of amyloid-β protein precursor (AβPP) and its cleaving enzymes, β- and γ-secretases (including presenilins) in hippocampal CA1 sector, following transient 10-min global brain ischemia. The quantitative reverse-transcriptase PCR assay demonstrated that the expression of all above genes that contribute to Aβ peptide generation was dysregulated during 30 days in postischemic hippocampal CA1 area. It suggests that studied Aβ peptide generation-related genes can be involved in AβPP metabolism, following global brain ischemia and will be useful to identify the molecular mechanisms underpinning that cerebral ischemia might be an etiological cause of AD via dysregulation of AβPP and its cleaving enzymes, β- and γ-secretases genes, and subsequently, it may increase Aβ peptide production and promote the gradual and slow development of AD neuropathology. Our data demonstrate that brain ischemia activates delayed neuronal death in hippocampus in an AβPP-dependent manner, thus defining a new and important mode of ischemic cell death.
منابع مشابه
Discrepancy in Expression of β-Secretase and Amyloid-β Protein Precursor in Alzheimer-Related Genes in the Rat Medial Temporal Lobe Cortex Following Transient Global Brain Ischemia.
Brain ischemia may be causally related with Alzheimer's disease. Presumably, β-secretase and amyloid-β protein precursor gene expression changes may be associated with Alzheimer's disease neuropathology. Consequently, we have examined quantitative changes in both β-secretase and amyloid-β protein precursor genes in the medial temporal lobe cortex with the use of quantitative rtPCR analysis foll...
متن کاملReduction in ischemic brain injury following the administration of pentoxifylline after transient global ischemia/ reperfusion in a rat model
Background: It is well known that the hippocampus, the CA1 Pyramidal cells in particular, is selectively vulnerable during global cerebral ischemia. Recently, it is observed that pentoxifylline has a neuroprotective effect. This study explored the pharmacological relationship between ischemia-induced cell death of the hippocampus and the efficacy of a vasodilator agent (pentoxifylline) in the...
متن کاملEffect of Coenzyme Q10 (ubiquinone) on hippocampal CA1 pyramidal cells following transient global ischemia/reperfusion in male wistar rat
Ischemia/Reperfusion (I/R)-induced cerebral injury has been reported as a leading cause of deathand long-term disabilities. Hippocampus is an area which is more sensitive to be affected by I/Rand hypoxic conditions. Coenzyme Q10 is a strong antioxidant which plays a role in membranestabilization. This study aims to investigate the possible role of CoQ10 in ameliorating thehistomorphological cha...
متن کاملK+ channel openers prevent global ischemia-induced expression of c-fos, c-jun, heat shock protein, and amyloid beta-protein precursor genes and neuronal death in rat hippocampus.
Transient global forebrain ischemia induces in rat brain a large increase of expression of the immediate early genes c-fos and c-jun and of the mRNAs for the 70-kDa heat-shock protein and for the form of the amyloid beta-protein precursor including the Kunitz-type protease-inhibitor domain. At 24 hr after ischemia, this increased expression is particularly observed in regions that are vulnerabl...
متن کاملEffect of Pentoxifylline on Ischemia- induced Brain Damage and Spatial Memory Impairment in Rat
Objective(s) The brief interruption of cerebral blood flow causes permanent brain damage and behavioral dysfunction. The hippocampus is highly vulnerable to ischemic insults, particularly the CA1 pyramidal cell layer. There is no effective pharmacological strategy for improving brain tissue damage induced by cerebral ischemia. Previous studies reported that pentoxifylline (PTX) has a neuroprot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 47 شماره
صفحات -
تاریخ انتشار 2015